

So... ( 3((3*iron + branch)/4) + ((anvil+hammer)/2) ) / 4
Q22 iron (4xsame Q) Q10 wood Q43 anvil Q35 hammer : 25q pickaxe
Q26 iron (4xsame Q) Q20 wood Q43 anvil Q35 hammer : 30Q Pickaxe
Q26 iron (4xsame Q) Q20 wood Q43 anvil Q43 hammer : 31Q Pickaxe
Q32 iron (4xsame Q) Q36 wood Q43 anvil Q43 hammer : 37Q Pickaxe
Q44 iron (4xsame Q) Q36 wood Q43 anvil Q43 hammer : 40Q Pickaxe
( 3 ((3*22 + 10)/4) + ((43+35)/2) ) / 4 =
( 3 (19) + 39 ) /4 = 24
( 3 ((3*26 + 20)/4 + 39 ) /4 =
( 3 (24.5) + 39) / 4 = 28.125
Alright... Lets try 2*iron + branch / 3
( 3 ((2*22 + 10)/3) + ((43+35)/2) ) / 4 =
( 3 (18) + 39 ) /4 = 23.25
( 3 ((2*26 + 20)/3) + 39 ) /4 =
( 3 (24) + 39) / 4 = 27.25
Alright, Let's go the other way... 4*iron + branch /5
( 3 ((4*22 + 10)/5) + ((43+35)/2) ) / 4 =
( 3 (19.6) + 39 ) /4 = 24.45
( 3 ((4*26 + 20)/5) + 39 ) /4 =
( 3 (24.8) + 39) / 4 = 28.35
5*iron + branch / 6
( 3 ((5*22 + 10)/6) + ((43+35)/2) ) / 4 =
( 3 (20) + 39 ) /4 = 24.75
( 3 ((5*26 + 20)/6) + 39 ) /4 =
( 3 (25) + 39) / 4 = 28.5
FFFUUUUUU
9*iron + branch / 10
( 3 ((9*22 + 10)/10) + ((43+35)/2) ) / 4 =
( 3 (20.8) + 39 ) /4 = 25.35
( 3 ((9*26 + 20)/10) + 39 ) /4 =
( 3 (25.4) + 39) / 4 = 28.8
So it's weighted VERY heavily on the metal q
If someone can do some tests with low q metal, high q branch
And high q metal, low q branch, that would be very helpful for figuring out the exact formula
EDIT:
I just saw this:
Quality for all full metal products are calculated with the formula: quality = (qMetal*4 + qAnvil*1.5 +qHammer*1.5)/7
So the anvil and hammer matter more than I thought.
It might be someing like
( 4((3*cast + branch)/4) + 1.5*anvil + 1.5*hammer) / 7
Let's try one more...
Q22 iron (4xsame Q) Q10 wood Q43 anvil Q35 hammer : 25q pickaxe
Q26 iron (4xsame Q) Q20 wood Q43 anvil Q35 hammer : 30Q Pickaxe
(4((3*22 + 10) / 4) + 1.5 * 43 + 1.5 * 35 ) / 7
(4(19) + 64.5 + 52.5) / 7 = 27.57
(4((3*26 + 20) / 4) + 1.5 * 43 + 1.5 * 35 ) / 7
(4(24.5) + 64.5 + 52.5) / 7 = 30.7
Close but no cigar.
Please more tests with a large difference between wood q and metal q